a2 United States Patent

US009449298B2

(10) Patent No.:

US 9,449,298 B2

Lowry et al. 45) Date of Patent: Sep. 20, 2016
(54) MANAGING COMPLEX DEPENDENCIES IN 5,995,753 A * 11/1999 Walkercccoovvvvrrrinnen 717/108
A FILE-BASED TEAM ENVIRONMENT 6,122,664 A * 9/2000 Boukobza et al. 709/224
6,151,605 A * 11/2000 Costa 717/163
. . 6,256,773 B1* 7/2001 Bowman-Amuah . 717/121
(75) Inventors: Iliee. El(liv‘v/ard dLowry’Sorgm’l}%T Sés) 6,510,551 B1* 1/2003 Miller 717/114
ajesh Vasudevan, Sandy, UT (US); 6,539,438 B1* 3/2003 Ledzus ot al. . o 710/8
Brent Thurgeod, Spanish Fork, UT 6,658,659 B2* 12/2003 Hiller et al.ccooceoecc. 717/170
(US); Ryan Cox, Provo, UT (US); 6,772,168 B2 82004 Ardoin et al.
Zack Grossbart, Cambridge, MA (US); ;,82,83& g% ggggg égmﬁOtiS f;t ?111~
. K ,051, ameron et al.
William Street, Orem, UT (US); 7,139,739 B2 11/2006 Agrafiotis et al.
Volker Gunnar Scheuber-Heinz, 7231400 B2 6/2007 Cameron et al.
Pleasant Grove, UT (US); Stephen R 7,246,136 B2 7/2007 Cameron et al.
Carter, Spanish Fork, UT (US) 7,290,007 B2 10/2007 Farber et al.
7,457,809 B2* 11/2008 Bennetto et al.
: . : : 7,752,603 B2* 7/2010 Harutunian et al. 717/121
(73) Assignee: EMC Corporation, Hopkinton, MA 7788238 B2* 82010 Gabriel ot al. ... " 2077605
Us) 8069120 B2* 11/2011 Gould et al. 706/47
. . o . 8,140,501 B2* 3/2012 Wu et al. ..ooooreiivrrins 707/705
(*) Notice: Subject to any disclaimer, the term of this 2003/0084437 Al* 5/2003 Cashin et al. 717/174
patent is extended or adjusted under 35 2005/0065972 Al* 3/2005 Haines et al. 707/103 R
2005/0149539 Al 7/2005 Cameron et al.
US.C. 154(b) by 2575 days. 2006/0101038 Al* 52006 Gabriel et al. 707/100
(21) Appl. No.: 12/119,555 (Continued)
(22) Filed: May 13, 2008 OTHER PUBLICATIONS
. . L. Herman, Ivan , “Web Ontology Language (OWL)”, http://www.w3.
(65) Prior Publication Data org/2004/0WL/, (Oct. 15, 2007).
US 2010/0095268 Al Apr. 15, 2010
Primary Examiner — Li B Zhen
(51) Int. CL Assistant Examiner — Viva Miller
GOGF 17/30 (2006.01) (74) Attorney, Agent, or Firm — Barry N. Young
G06Q 10/10 (2012.01)
(52) US. CL 57 ABSTRACT
C.PC s s G06Q 10/10 (2013.01) Techniques managing complex dependencies in a file-based
(58) Field of Classification Search team environment are provided. A software module is rep-
CPC ... GO6F 8/20; GO6Q 10/10; G0§Q 107101 resented as an object. The object is defined via a file. The file
See application file for complete search history. includes relationships, and some of the relationships define
. dependencies to other objects. In some cases, attributes for
(56) References Cited the object are also included in the file and are defined via
U.S. PATENT DOCUMENTS refe.rences to still.othelj objects. .The r.elationships and the
attributes are carried with the object via the file.
5,805,899 A * 9/1998 Evans et al. .coccoococonn. 717/170
5,987,471 A * 11/1999 Bodine et al. 25 Claims, 4 Drawing Sheets

111

CREATE A FILE THAT
DEFINES CHARACTERISTICS

a
122

INTERACT WITH A USER OF A SOFTWARE MODULE
VIA AN INTERFACE TO THAT EXECUTES AS
DEFINE THE [<—> INSTRUCTIONSON A
CHARACTERISTICS MACHINE, THE SOFTWARE
INCLUDED IN THE FILE MODULE IS REPRESENTED
AS AN OBJECT
121 120 7
INCLUDE WITH EACH -« DEFINE MULTIPLE
RELATIONSHIP DEFINED RELATIONSHIPS BETWEEN
WITHIN THE FILE A THE OBJECT AND OTHER

RELATIONSHIP TYPE THAT
INCLUDES ONE OF THE
FOLLOWING: & PARENT
CHILD RELATIONSHIP THAT
INCORPORATES ANOTHER ONE

OBJECTS ASSOCIATED WITH
A TEAM-BASED PROJECT
ENVIRONMENT (TBPE)
WITHIN THE FILE

OF THE OTHER OBJECTS AND

ITS DEFINITION WITHIN THE 130 !

FILE, A REFERENCE THAT

OTHER OBJECTS TO WHICH IT
IS ASSOCIATED, AND A USER-
DEFINED RELATIONSHIP TO

SUBSEQUENTLY
INSTANTIATE AN INSTANCE
OF THE OBJECT WITHIN THE

‘TBPE AND CONFIGURING
THE OBJECT ON THE
MACHINE IN RESPONSE TO
THE RELATIONSHIPS
DEFINED IN THE FILE

AUTOMATICALLY
DEFINE AT LEAST
ONE RELATIONSHIP
FOR THE OBIECT
WITHIN THE FILE AS
ABACK REFERENCE
RELATIONSHIP, THE
BACK REFERENCE
RELATIONSHIP

ONE OTHER DBJECT

ANDITS
RELATIONSHIPS

123

ONE OF THE OTHER OBJECTS

140 l

REFERENCE TWO DIFFERENT

SELECTED IN RESPONSE TO A

PERMIT TWO ATTRIBUTES
HAVING A SAME NAME TO
e
ONES OF THE OTHER
OBJECTS, WHEREIN A
PARTICULAR ONE OF THE

IDENTIFYING AT LEAST ONE
ATTRIBUTE ASSOCIATED
WITH THE OBIECT AND
DEFINED IN THE FILE TO
REFERENCE ANOTHER ONE
OF THE OTHER OBJECTS

DEFINE AT LEAST
ONE

RELATIONSHIP
THAT FERMITS
THE OBJECT TO
SHARE A PROFILE
WITH THAT WHICH
1S DEFINED FOR
ANOTHER ONE OF
THE OTHER
OBIECTS

TWO ATTRIBUTES IS

PROCESSING OCONTEXT OF
THE OBJECT AT RUN TIME

\
141

US 9,449,298 B2
Page 2

(56)

References Cited

U.S. PATENT DOCUMENTS

2006/0112083 Al
2006/0212879 Al*

5/2006 Takase et al.
9/2006 Bennetto et al. 719/328

2007/0083347 Al
2008/0065592 Al
2010/0088671 Al*
2010/0198799 Al*

* cited by examiner

4/2007
3/2008
4/2010
8/2010

Bollobas

Doyle

Rentsch et al. 717/108
Krishnan et al. 707/702

U.S. Patent

111

Sep. 20, 2016

Sheet 1 of 4

CREATE A FILE THAT

US 9,449,298 B2

100

N 110 | DEFINES CHARACTERISTICS r'el
INTERACT WITH A USER N OF A SOFTWARE MODULE 122
VIA AN INTERFACE TO THAT EXECUTES AS el
DLFINE THE < INSTRUCTIONS ON A AUTOMATICALLY
CHARACTERISTICS MACHINE, THE SOFTWARE DEFINE AT LEAST
J MODULE IS REPRESENTED ONE RELATIONSHIP
INCLUDED IN THE FILE AS AN OBJECT FOR TIIE OBJECT
121 120 WITHIN THE FILE AS
\ N ¢ A BACK REFERENCE
INCLUDE WITH EACH DEFINE MULTIPLE R IO HIP, T
] BACK REFERENCE
RELATIONSHIP DEFINED RELATIONSHIPS BETWEEN RELATIONSHIP
WITIIIN TIIE FILE A THE OBJECT AND OTHER IDENTIFIES ONE OF
R%i’é{?ﬁ{?;‘é‘;%ﬁ%g“T OBJECTS ASSOCIATED WITH TIIE OTIIER OBJECTS
o A TEAM-BASED PROJECT THAT REFERENCE
FOLLOWING: A PARENT AND
CHILD RELATIONSHIP THAT ENVIRONMENT (TBPE) THE OBIECT IN A
INCORPORATES ANOTHER ONE WITHIN THE FILE DIFFERENT FILE
THAT DEFINES THAT
OF THE OTHER OBJECTS AND ONE OTHER OBJECT
ITS DEFINITION WITHIN THE 130 N i AND ITS
FILE, A REFERENCE TIIAT RELATIONSHIPS
POINTS TO ONE OF THE OTHER SUBSEQUENTLY
OBJECTS, A CONTAINED INSTANTIATE AN INSTANCE
REFERENCE THAT LOGICALLY OF THE OBJECT WITHIN THE 193
REPRESENTS THE PARENT AND TBPLE AND CONTIGURING /
CHILD RELATIONSHIP BUT THE OBJECT ON THE DEFINE AT LEAST
DOES NOTSHARE STORAGE || VACHINE IX RESPONSE T0
OTIIER OBJECTS TO WIIICII IT gggnﬁggﬁlggglgﬁ% RELATIONSHIP
IS ASSOCIATED, AND A USER- THAT PERMITS
DEFINED RELATIONSHIP TO THE OBJECT TO
ONE OF THE OTHER OBJECTS 140 \ l SHARE A PROFILE
IDENTIFYING AT LEAST ONE WIISTISETFH&ESV}%EH
PERMIT TWO ATTRIBUTES ATTRIBUTE ASSOCIATED
. ANOTHER ONE OF
HAVING A SAME NAME TO WITH THE OBJECT AND THE OTHER
REFERENCE TWO DIFFERENT [DEFINED IN THE FILE TO OBJECTS
ONES OF THE OTHER REFERENCE ANOTHER ONE
OBJECTS, WHEREIN A OF THE OTHER OBJECTS
PARTICULAR ONE OF THE
TWO ATTRIBUTES 1S
SELECTED IN RESPONSE TO A
PROCESSING CONTEXT OF
THE OBJECT AT RUN TIME
FIG. |

\
141

U.S. Patent

Sep. 20, 2016

Sheet 2 of 4

US 9,449,298 B2

ALLOW AT LEAST SOME 231 RECEIVE A REQUEST TO LOAD A 200
RELATIONSHIPS DEFINED [/ SOFTWARE MODULE (8M) INTO &
WITHIN THE FILE TOBE |« MEMORY OF A MACHINE FOR
PROCESSED VIA KEYS PROCESSING AS A FIRST OBJECT N
INCLUDED IN THE FILE, THE (FO) 210
KEYS WHEN DYNAMICALLY v
DE-REFERENCED REFER TO ACQUIRE A FILE THAT DEFINES
THE SO’S OR THE TO’S RELATIONSHIPS AND ATTRIBUTES
FOR THE FO N\
¥ 220
232 -
SET THE RELATIONSHIPS AND THE
ALLOW AT LEAST SOME ATTRIBUTES IN MEMORY FOR TIIE K
ATTRIBUTES DEFINED DN FO 230
WITHIN THE FILE TO v
REFERENCE THE SO’S OR PERMIT AT LEAST SOME SECOND
THE TO’S OBIECTS (SO’S) DEFINED WITHIN THE
FILE TO BE BYPASSED IN RESPONSE
TO RELATIONSHIP TYPES
233 ASSOCIATED THE RELATIONSHIPS,
N AND THE SO’S ARE NOT LOADED
< INTO MEMORY WITH THE FO \
DYNAMICALLY SET A 7
PARTICULAR RELATIONSHIP 240
NOT DEFINED WITHIN THE LOAD AT LEAST SOME THIRD
FILE WHEN LOADING THE OBIECTS (10°S) DEFINED WITHIN
THE FILE IN RESPONSE TO THE
FO, THE PARTICULAR RELATIONSIIIP TYPES ASSOCIATED N
) ! 250
RELATIONSHIP IDENTIFIES A WITH THE RELATIONSHIPS
FOURTH OBJECT THAT IS 260
LOADED INTO MEMORY v /
AND THAT IS CURRENTLY IDENTIFY THE FO AS BEING A CHILD OBJECT OF ANOTHER
POINTING TO THE FO PARENT OBJECT THAT IS CURRENTLY NOT LOADED INTO THE

ALLOW TWO ATTRIBUTES
HAVING A SAME NAME TO BE

MEMORY AND PERMITTING THE FO TO LOAD EVEN WHEN THE

PARENT OBJECT IS CURRENTLY NOT LOADED INTO THE
MEMORY OF THE MACHINE

PROCESSED AND LOADED INTO
MEMORY FOR THE FO, A
PARTICULAR CONTEXT FOR
TIIE SAME NAME IS RESOLVED
DURING PROCESSING OF THE

FO, AND TWO DIFFERENT
VALUES ARE ASSOCIATED
WITH THE SAME NAME OF THE
TWO ATTRIBUTES A FIRST
VALUE REFERENCING A
FOURTH OBJECT AND A
SECOND VALUE REFERENCING
A FIFTH OBIJECT

N\

IDENTIFY THE SAME NAME AS AN ATTRIBUTE WHOSE
VALUE IS RESOLVED IN THE PARTICULAR CONTEXT TO A
PARTICULAR VALUE FOR A PARTICULAR ATTRIBUTE OF
THE FOURTH OBJECT OR THE FIFTH OBJECT

234

FIG. 2

235

U.S. Patent Sep. 20, 2016 Sheet 3 of 4 US 9,449,298 B2

300

“a
302
AN
301 SOFTWARE SOFTWARE
\ MODULE LOADER MODULE EDITOR
FIG. 3
400
rrd
401 SOFTWARE
N MODULE

402

\l RELATIONSHIP
MANAGER

FI1G. 4

U.S. Patent

2 Pyper EString
< key: E3tring

H

= ohjectURL Extring

& CReferance

< parentURL ESting
< type: EString

i
]

2 objectURE EString
2 containmert: EBoglean

0.1

CBackReferznce

22 ojectUR): EString

2 containment; EBoclean

Sep. 20, 2016 Sheet 4 of 4 US 9,449,298 B2
& CAssociatedAttrSet = CStructure
s mame: EString 0.1
<3 ohjectlURL EString
&/ BgsOCiEtedAtrs 0.1
aesocisteclAese narentadtrigute
L 1
0.1 | parent ohiect 0.1
—— . & Chrribute
g ‘ U . Ll
& Cobject parentOhject sttrbutes
& Relatisn i classType: E3tring %s?ociatedObject 1° el ES‘T'“Q
22 mame; Etring rellons = e “ e
oo 4 o name: EString

FIG. 5

US 9,449,298 B2

1

MANAGING COMPLEX DEPENDENCIES IN
A FILE-BASED TEAM ENVIRONMENT

BACKGROUND

Collaborative environments are becoming pervasive in
the industry. One area of collaboration that is critical to an
enterprise is that which is associated with new software
development. During software development a variety of
different developers can be working on the same or depen-
dent modules at the same time and from entirely different
processing environments from one another. A variety of
different project life-cycle and version control systems
attempt to coordinate project activities in scenarios such as
this.

The problem with these approaches is that they are either
holistic or monolithic implementations. In other words, if a
dependency exists in a piece of software code being worked
on by one team member then if that same code is not
available, other downstream members are forestalled from
working on their pieces of software code even when they do
not use the piece of code that is not available. So, existing
solutions require relationships between code modules; the
relationships are carried for the whole project in a central-
ized fashion (holistic or monolithic).

Modeling individual pieces of code in a version-con-
trolled or collaborative environment is also straightforward
and not an issue when the traditional holistic approach is
used. However, most developers work on projects that have
a complex web or relationships with one another. So, when
the conventional mechanisms are used there is a lot of
wasted effort, down time, etc. Furthermore, communication
snafus during project management occur when dependen-
cies are missing and this can cause failures to erupt or can
cause long unnecessary project delays to ensue.

Most pieces of software use some sort of underlying data
model to store its information. The information is usually
stored in one of three ways: a database, independent files,
and/or highly coupled files that are linked together. As
discussed above, enterprises often have a great need to share
the model information so that the enterprise departments and
resources can collaborate on projects and leverage the
individual pieces of software available within the enterprise
to perform tasks in a streamlined and automated manner. To
make this work the database or files are often stored and
accessible to users via a central machine or server of an
enterprise’s network. Another way to make this work is to
permit copies of the database or the files to be made on an
individual basis. But, this creates substantial maintenance
and support issues within the enterprises as multiple differ-
ent copies of the database and the files proliferate around the
enterprise environment.

Another issue is that typically the enterprise wants some
mechanism to version a model at certain points in time so
that a specific version of a model can be return to when
needed. For enterprise’s having a complex web of relation-
ships between software modules (dependent linkages
between modules) there exists no practical off-the-shelf
product that can supply this solution. As a result, enterprises
often develop their own internal and ad hoc approaches or
forgo any attempt to have a viable versioning solution.

Thus, what is needed are improved techniques for man-
aging complex software dependencies in file-based team
environments.

SUMMARY

In various embodiments, techniques for managing com-
plex software dependencies in file-based team environments

20

40

45

50

55

60

65

2

are provided. More specifically, and in an embodiment, a
method is provided for managing complex object dependen-
cies in a team-based project environment. A file is created
that defines characteristics of a software module that
executes as instructions on a machine. The software module
is represented as an object. Multiple relationships are
defined between the object and other objects associated with
a team-based project environment within the file. Subse-
quently, an instance of the object is instantiated within the
team-based project environment and the object is configured
on the machine in response to the relationships defined in the
file.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a diagram of a method for managing complex
object dependencies in a team-based project environment,
according to an example embodiment.

FIG. 2 is a diagram of another method for managing
complex object dependencies in a team-based project envi-
ronment, according to an example embodiment.

FIG. 3 is a diagram of an object-dependencies manage-
ment system, according to an example embodiment.

FIG. 4 is a diagram of another object-dependencies man-
agement system, according to an example embodiment.

FIG. 5 is a diagram providing an example mechanism that
displays and captures a technique for defining how objects
can be tied together to define any type of object-to-object
relationship.

DETAILED DESCRIPTION

A “resource” may include a user, content, a processing
device, a node, a service, an application, a system, a schema
definition, a directory, an operating system (OS), a file
system, a data store, a database, a policy definition, a
configuration definition, a file, a World-Wide Web (WWW)
service, a WWW page, groups of users, combinations of
these things, etc. The terms “service,” “application,” and
“system” may be used interchangeably herein and refer to a
type of software resource that includes instructions, which
when executed by a machine performs operations that
change the state of the machine and that may produce
output.

A “software module” is a particular type of resource that
processes as instructions on a machine, such as a computer.
The phrase “software module” and the term “object” may be
used interchangeably herein and below. Thus, an object is a
set of instructions implemented on a computer-readable
storage medium that processes on a computer.

A “project” refers to the activity associated with an
enterprise or government producing a good (product) or
personal service (e.g., financial advice, etc.) for consump-
tion in the marketplace. The activity for the project is defined
in various stages of the project’s lifecycle, such as by way
of example only project definition, project development,
project testing, project release, etc. Thus, a “project” is
represented and electronically defined as a series of stages
associated with the project’s lifecycle. Each stage includes
its own processing environment having its own or shared
resources. So, a stage is represented and electronically
defined as one or more resources and their relationships with
other resources of the same stage or a different stage. A
project may also be viewed as a type of resource.

A “processing environment” refers to one or more physi-
cal processing devices organized within a local network. For
example, several computers connected via a local area

US 9,449,298 B2

3

network (LAN) may collectively be viewed as a processing
environment. The processing environment also refers to
software configurations of the physical processing devices,
such as but not limited to operating system, file system,
directory service, etc. A single processing environment may
be logically defined, such that it spans multiple different
networks (e.g., multiple different LAN’s, a LAN and a
wide-area network (WAN), etc.).

Objects are shared, versioned, and managed via various
projects and various processing environments within an
enterprise. As will be described more completely herein and
below, each object also defines a complex web of relation-
ships with other objects within a project and team-enabled
environment.

Various embodiments of this invention can be imple-
mented in existing network architectures, security systems,
data centers, and/or communication devices. Any particular
architectural layout or implementation presented herein is
provided for purposes of illustration and comprehension
only and is not intended to limit aspects or embodiments of
the invention.

It is within this context, that various embodiments of the
invention are now presented with reference to the FIGS. 1-4.

FIG. 1 is a diagram of a method 100 for managing
complex object dependencies in a team-based project envi-
ronment, according to an example embodiment. The method
100 (hereinafter “object relationship editor service™) is
implemented as instructions in a machine-accessible and
readable medium. The instructions when executed by a
machine (processor and memory enabled device) perform
the processing depicted in the FIG. 1. The object relationship
editor service is also operational over and processes within
a network. The network may be wired, wireless, or a
combination of wired and wireless.

As will be more fully described herein and below, the
object relationship editor service permits a software module
represented as an object to be defined, configured, edited,
and instantiated on a machine via a configuration file. The
configuration file includes a plurality of novel relationships
and attributes that permit a variety features in a team-
enabled and versioned processing environment.

At 110, the object relationship editor service creates a file
that defines characteristics or a software module (object type
of resource). The software module executes as instructions
on a machine (such as a computer). Moreover, the software
module is represented as an object. The characteristics
include a variety of configuration and run-time instantiation
information for the object. Some of these characteristics
include relationships vis-a-vis other objects in a team-
enabled project based environment and attributes for the
object. The relationships can be viewed as dependencies.

According to an embodiment, at 111, the object relation-
ship editor service interacts with a user (another type of
resource) via an interface to define the characteristics
included within the file. So, a user can custom define the
characteristics via an interface that interacts with the object
relationship editor service.

At 120, the object relationship editor service defines
multiple relationships between the object and other objects,
which are associated with the team-based project environ-
ment within the file.

The file is carried with the object, it may be embedded in
the instructions of the object or it may be carried as metadata
with the object. So, unlike conventional approaches the
relationships between the object with respect to other objects

15

30

35

40

45

50

55

60

65

4

are carried with the object. The file is not independent of the
object; the file is in fact dependent and considered part of the
object.

In an embodiment, at 121, the object relationship editor
service includes with each relationship, which is defined
within the file, a relationship type. A variety of relationship
types can be defined for each relationship, such as: a parent
and child relationship that incorporates another one of the
other objects and its corresponding definition within the file;
a reference type that points to one of the other objects; a
contained reference that logically represents the parent and
child relationship but that does not share storage with
another one of the other objects to which it is associated; and
a user-defined relationship to one of the other objects. So,
each relationship is defined in the file of the object and each
relationship includes a relationship type. The type indicates
how it is that an object loader is to handle a particular
relationship at runtime. For instance, the reference type may
permit not loading another object that is referenced and may
via policy simply raise a runtime warning to the user.
Conversely, a parent-child type may include a physical
dependency such that the dependent child or parent object
has to be loaded before the object can be successfully
processed and loaded. The contained reference type permits
the logical benefits of a parent-child relationship but may
permit one of the dependent objects in the relationship to not
be loaded when the other object is loaded. Other situations
can be defined via a user-defined type.

In an embodiment, at 122, the object relationship editor
service automatically defines at least one relationship for the
object within the file as a back reference relationship. The
back reference relationship identifies one of the other objects
that reference the object in a different file that defines the one
of the other objects and its relationships. In other words, the
processing environment can be inspected via the object
relationship editor service and a determination made that
another object, which is loaded and is processing, references
the object being created or edited via the object relationship
editor service. In such a situation, the relationship can be
added by the object relationship editor service to the object
that identifies that back reference. So, suppose object A is
being defined via File A and object B is already loaded in the
team-enabled project environment via File B and File B
references object A; here, the object relationship editor
service adds a relationship to A as a type called “back
reference” and includes the reference to object B.

In another embodiment, at 123, the object relationship
editor service defines at least one relationship that permits
the object to share a profile or storage with that which is
defined in another one of the other objects, which is avail-
able in the team-enabled project environment. So, profiles
and storage can be shared via references made and relation-
ships defined in the file of the object. This is convenient
shorthand and leverages existing objects in the processing
environment.

At 130, the object relationship editor service subsequently
instantiates an instance of the object within the team-enabled
project environment and configures that object on the
machine in response to the relationships defined in the file.

In some cases, at 140, the object relationship editor
service identifies at least one attribute associated with the
object defined in the file that references another one of the
other objects. So, a particular attribute and by way of
example only, such as size, color, shape, behavior, can be
configured to be that which is defined by another object of
the team-enabled project environment. Again, this is

US 9,449,298 B2

5

extremely convenient to assign attributes based on a context
associated with another object.

In a related embodiment, at 141, the object relationship
editor service permits two attributes that have the same
name to reference two different ones of the other objects. A
particular one of the two attributes is selected in response to
a processing context of the object at runtime. So as an
example only, consider that the file can have two attributes
defined for its size, each attribute pointing to a different
object and the particular size defined based on a particular
processing context of the object.

Some example illustrations and processing scenarios are
now defined for purposes of further illustrating the object
relationship editor service.

Most pieces of software use some sort of underlying data
model to store its information. This information is usually
store in one of three ways: a database, independent files;
and/or highly-coupled files linked together.

One aspect that is significant in many business environ-
ments is to share that model information with fellow team-
mates and to let multiple people edit and change the under-
lying model, by interacting with it via a team-enabled
application. For this to work in all of the above scenarios, the
database or files are usually on a central machine. But, they
can also be shared by copying the database or files for each
instance.

The challenge that exists is that usually one wants some
way to version the model at certain points in time so that one
can return to it, for whatever reason. This object relationship
editor service permits a mechanism for making this work-
able—the ability to version highly-coupled files that are
linked together in a team environment.

Versioning and sharing files in a team environment that
are connected in a web of relationships is very complex and
is not a problem that has been adequately addressed in the
industry.

The challenge is that if one has a web of objects with links
that define relationships between those objects and each of
those objects is basically stored in its own file, or is
embedded within another object in a file, there is NO
off-the-shelf version control system (like CVS, Subversion,
etc.) that can practically work and ensure model integrity in
a team or version-controlled environment. So, the process-
ing of the object relationship editor service is needed to
provide the storage and handling in such an environment to
get the user the ability to have model integrity as he/she
works with the model in a team environment.

It is noted herein that the phrases “team-enabled” and
“version-controlled” are closely tied and are used inter-
changeable conceptually. This is because if one solves
problems for one, one ends up solving it for the other via the
processing of the object relationship editor service. In other
words, there many scenarios for breakage in a model when
sharing between two different people (users) and the pro-
cessing of the object relationship editor service puts forth a
mechanism to avoid these disasters. This same mechanism
can also be applied to the principles behind version control
when one may be versioning between version 5 of an object
and version 10. If one is on version 10 of an object and
decides to go back to version 5 and one didn’t pull in
associated objects, etc. one ends up with the same technical
model integrity challenges that the object relationship editor
service solves.

Object Modeling Relations

The first part is for all object relationships to be stored in
a way so that the relationships are persisted in each object’s
file so that they can be successfully reconstructed. The

10

15

20

25

30

35

40

45

50

55

60

65

6

architecture of the object relationship editor service is
described and implemented generically so that it can apply
to the broadest set of usages in the real world. The FIG. 5§
diagram displays and captures a mechanism for defining
how these objects can be tied together to define any type of
object-to-object relationship.

Objects are represented by CObject in the FIG. 5. Here,
another object is defined that represents the relationships and
the nature of that relationship. There can be any number of
relationship types. The ones that are most common and
generic to describe most object model relationships are:

1. Parent/child—where one object physically contains
another object—meaning, that if the parent object were to be
deleted from the model, the child object would also go away.

2. Reference—where one object points to another object;
in this case, if the one object was deleted, the other one
would not be, just the relationship would go away.

3. Contained Reference—similar to the above, with the
slight twist that for end-user modeling purposes, one wishes
this relationship to be expressed visually and conceptually as
a parent/child relationship, but its storage is not a true
parent/child storage, so one has the same freedom where a
delete of one object, will not cause the delete of the other.

4. User Defined—there can be any number of other
“specific” types of relationships that make sense to any
number of possible modeling domains that could leverage
this Relation concept.

One can view the CObject conceptually as a concrete
instance of an object in a model and its storage maps to one
file. It may have some attributes that may individually store
to separate supporting files, but the object, at minimum,
stores to a file.

In this object’s file, there are entries to list all of the
various relations; each one could be a different type. One can
have multiple relations of a given type. For example, one can
have multiple child/parent relations—this just means that an
object can have multiple children.

Serialization to Disk

Relationships are not hard-coded on to each different type
of object or instance, but are generically defined in a way so
that it can work for any type of object with any type or
relation. And, the mechanism permits relationships to be
serialized and de-serialized to and from disk. The storage of
this can be expressed in extensible Markup Language
(XML), such as the following:

<Object name="“Foo” type="“A">

<relations name="SharedProfile” type=“Reference” key="B"/>
<relations name="Schema” type=“Child” key="“C"/>

<relations name="Servers” type="ContainedReference” key="D"/>
<relations name="DriverSets” type="ContainedReference” key="E"/>
<relations name="Collections” type="ContainedReference” key="F"/>
</Object>

This illustration includes shows a key that points to
another object.
Modeling Back References

Obviously, for a model to have integrity in a team
environment, it is not enough to model references, but also
back references, but without a good mechanism this can
quickly turn into a mess and then you have a model that
quickly breaks down in a team environment and/or version
controlled environment.

So, the object relationship editor service has the notion of
a Relationship Manager (also discussed below) that makes
sure that back reference relations get added to a target object
whenever a reference relation is created. And, when the

US 9,449,298 B2

7

relationship goes away, that is cleaned up. Using the above
example, object A is pointing to object B. If one were to look
at object’s B’s file, one would see a BackReference relation
that points back to A.

<Object name="F002” type="B">
<relations name=“ABackRef” type=“BackReference” key="A"/>
</Object>

Modeling Attributes that Point to Objects

The above diagram illustrates how this mechanism allows
for objects to contain attributes, which in turn can point to
other objects. This is another form of creating a reference
relationship, though this is not treated as a first-class object-
to-object relationship with automatic back reference han-
dling. It’s merely a convenience for allowing an attribute to
point to another object.
Modeling Embedded Objects

An embedded object is an object that is physically embed-
ded in another object, so when the object serializes to file, it
serializes in the same file within the object. One way to do
this is to have an object build an “Embedded” relation with
another object. Another way is to have an object which has
an attribute that is of type Structure; this structure can
behave as an object, but it is not a first-class object that can
have relations. The serialization is the following:

<Object name=“Foo” type=“A">
<relations name="“SharedProfile” type="Reference” key="B"/>
<relations name="“Schema” type=“Child” key="C"/>
<relations name="“Servers” type="ContainedReference” key="D"/>
<relations name="“DriverSets” type="“ContainedReference” key="E"/>
<relations name="“Collections” type=“ContainedReference” key="F"/>
<Object name="Fo03” type="2">

<relations name="SharedProfile” type="Reference” key="B"/>
<relations name=“CBackRef” type="BackReference” key="C"/>
</Object>
</Object>
<Object name="Foo4” type="C">
<relations name="“SharedProfile” type="Reference” key="B/Z”/>
</Object>

The above illustration shows the following two concepts:

1. Object A embeds Object Z

2. Object C points to Object Z, which is embedded in

Object B and is able to have a back reference out from
its embedded position to top-level Object C.

Modeling Associated Objects

This provides novel modeling capability. This technique
is that an object can have attributes that belong to itself but
pertain (or is associated) with another object.

Example:

Object A

Size: Object B

Shape: Object B

Color: Object B

Size: Object C

Shape: Object C

Color: Object C

Object A has two Size attributes. One size is vis-a-vis
object B, and the other is vis-a-vis object C. The collection
of attributes that are associated with another object, is called
an Associated AttrSet. A practical example is one can have a
Car that has a max speed of 50, when driver A is in the car,
but a speed of 65, when driver B is in the car (or the position
of the mirrors, seat, etc.). This technique allows for such a

10

20

30

35

40

45

50

55

60

65

8

relationship to be modeled and modeled in a way so that it
can be shared in a team environment and versioned.
Loading the Model into Memory (Discussed More Com-
pletely Below with Reference to Method 200 and the FIG.
2)

It has now been described how a team-enabled model can
be modeled and serialized. The next step is to describe how
it can be de-serialized, or loaded back into memory. The
model load mechanism can start with ANY object in the
graph of objects, not just the top object. It can start with the
bottom object, or anywhere in between. This is a substantial
improvement over past and conventional approaches.

When the object is loaded, all of its attributes and rela-
tionships are then de-serialized into native object fields.
When, based on some user or system event, the model can
load more deeply (e.g. follow up a parent path, child path,
or traverse a reference or backreference path), the model-
loading mechanism can just study the relation object that it’s
trying to traverse and load the object accordingly, and thus
be able to go from object to object dynamically at run-time
as needed. The object relationship editor service demon-
strates in a novel approach how the object model relation-
ships are defined, serialized to disk, and then can be de-
serialized in a practical way that actually works for a
team-enabled environment.

Various aspects and variations on the approaches dis-
cussed above are now presented with reference to the FIGS.
2-4.

FIG. 2 is a diagram of another method 200 for managing
complex object dependencies in a team-based project envi-
ronment, according to an example embodiment. The method
200 (hereinafter “object loading service”) is implemented as
instructions in a machine-accessible and readable medium.
The instructions when executed by a machine perform the
processing depicted in the FIG. 2. The object loading service
is also operational over and processes within a network. The
network may be wired, wireless, or a combination of wired
and wireless.

The object loading service represents back-end process-
ing associated with object relationship editor service repre-
sented by the method 100 discussed above with the FIG. 1.
In other words, the object loading service is used to load and
dynamically manage relationships and attributed defined,
edited, and created by the object relationship editor service.

At 210, the object loading service receives a request to
load a software module into memory of a machine for
processing a first object as the software module. The request
can be received in response to a variety of situations. A
manual request can be received from a user. Alternatively,
the request can be generated in response to another object
being loaded that needs to have the first object loaded to
process successfully (a hard dependency). In fact, any
condition defined in an event or policy can be used to
generate the request for loading the first object.

At 220, the object loading service acquires a file that
defines relationships and attributes for the first object. The
mechanism and techniques for creating and editing the file
and its direct association with the first object was presented
and described in detail above with reference to the method
100 of the FIG. 1.

At 230, the object loading service sets the relationships
and the attributes in memory for the first object. That is,
memory is configured and set aside for handling the struc-
ture of the first object when it processes on the machine.
Hard dependencies are resolved and other objects loaded if
needed and soft dependencies are permit to proceed without
necessarily loading referenced objects.

US 9,449,298 B2

9

According to an embodiment, at 231, the object loading
service allows at least some relationships defined within the
file to be processed via keys included in the file. The keys
when dynamically de-referenced refer to other second
objects or third objects. In other words, keys can be used in
the file to refer to external objects and the keys can be
resolved to specific files associated with specific external
objects. This is convenient in the event that names for
objects change or locations change, the key can be used to
generically refer to those objects and resolve them at run
time or load time as needed.

In another case, at 232, the object loading service allows
at least some attributes defined within the file to reference
the second objects or the third objects. In other words,
attributes that define properties of the first object, such as but
not limited to size, color, behavior, etc. can be defined in the
file for the first object via a reference to another object. The
value assigned to the property (attribute) is resolved based
on what the value is for the object assigned in the file. This
was discussed in detail above with reference to the method
100 of the FIG. 1.

In still another case, at 233, the object loading service
dynamically sets a particular relationship not defined within
the file when loading the first object. The particular rela-
tionship identifies a fourth object that is loaded into memory
and that is currently pointing to the first object. In other
words, the object loading service detects that a fourth loaded
object within the team-enabled project environment includes
a reference to the first object. In response to this situation,
the object loading service includes a back reference within
the loaded version of the file for the first object that provides
a back pointer to the fourth object. Again, this situation and
examples related thereto were described in detail above with
reference to the method 100 of the FIG. 2.

According to an embodiment, at 234, the object loading
service allows two attributes to have a same name within the
file and each to be processed and loaded into memory for the
first object. A particular processing context for the same
name is resolved during processing of the first object. Two
different attribute values are associated with or assigned to
the same name and duplicated attribute within the file. A first
value for a first instance of the same name references a
fourth object and a second value for a second instance of the
same name references a fifth object. The specific value
assigned to the same name attribute is resolved based on the
runtime processing context of the first object. Examples
associated with this were described in detail above with
reference to the method 100 of the FIG. 1.

Continuing with the embodiment at 234 and at 235, the
object loading service identifies the same name as an attri-
bute associated with a size, shape, or color property (this is
by way of example only) that is to be assigned to the first
object. The resolution of the value assigned to the first object
property is again in the particular context to a value for the
size, shape, or color property of the fourth or fifth object.

At 240, the object loading service permits at least some
second objects defined within the file to be bypassed in
response to relationship types associated with the relation-
ships. So, the second objects are not loaded into memory
with the first object. Policy may drive the actions of the
object loading service such that a warning can be issued or
warnings can be turned off by users when second objects are
not loaded. The second objects are not loaded with the
relationship types permit the first object to be loaded without
the second objects and when the second objects are not
available for loaded or not already loaded.

5

10

15

20

25

30

35

40

45

50

55

60

65

10

At 250, the object loading service loads at least some third
objects defined within the file in response to the relationship
types associated with the relationships. Here, the loaded
third objects may be embedded within the file of the first
object or may be hard dependencies identified via the
relationship types that the object loading service cannot
ignore when loading the first object, such that these third
objects have to loaded when loading the first object.

In an embodiment, at 260, the object loading service
identify the first object as being a child object of another
parent object that is currently not loaded into the memory
and permits the first object to load even when the parent
object is currently not loaded into the memory of the
machine. In other words, the objects can be loaded in any
order within the machine, such that child or leaf nodes of a
hierarchy of objects can be loaded first and before the
dependent parents are loaded. A discussion of this was
presented above with reference to the method 100 of the
FIG. 1.

FIG. 3 is a diagram of an object-dependencies manage-
ment system 300, according to an example embodiment. The
object-dependencies management system 300 is imple-
mented as instructions on or within a computer-readable
storage medium and a machine-accessible and readable
medium. The instructions when executed by a machine
(computer, etc.) perform various aspects of the processing
depicted with respect to the method 100 of the FIG. 1 and
the method 200 of the FIG. 2. The object-dependencies
management system 300 is also operational over a network
and the network may be wired, wireless, or a combination of
wired and wireless.

The object-dependencies management system 300
includes a software module loader 301 and a software
module editor 302. Each of these components and their
interactions with one another will now be discussed in turn.

The software module loader 301 is implemented in a
machine-accessible and a computer-readable storage read-
able medium and is to process on a machine within of the
network. Example processing associated with the software
module loader 301 was described in detail above with
reference to the object loader service represented by the
method 200 of the FIG. 2.

The software module loader 301 accesses files associated
with software modules (objects). Each file defines attributes
and relationships for a particular one of the software mod-
ules. Moreover, each file is carried with or embedded within
each software module to which it is associated. At least one
relationship for each file references a different one of the
software modules that is not associated with that particular
file being loaded by the software module loader 301. So,
each software module via its file includes a complex web of
other object dependencies defined via the relationships and
attributes.

Furthermore, at least one attribute is defined in each file
via a particular reference to another one of the software
modules. That is, properties that are to be set by the software
module loader 301 can be resolved at runtime or load time
by reference to another and different software module.

The software module loader 301 uses each file to load a
particular software module into memory with the relation-
ships and attributes.

In an embodiment, at least one file includes a duplicated
attribute. Each instance of the duplicated attribute references
a different one of the software modules.

In still another situation, at least one file includes a
particular relationship that shares a storage structure with a
different one of the software modules from that which is

US 9,449,298 B2

11

associated with the file. So, structure can be shared via
references and reference types identified in the file.

According to an embodiment, the software module loader
301 includes a particular relationship with a loaded version
of a particular software module that identifies a reference
that a different one of the software modules has that refer-
ence the particular software module. So, the different soft-
ware module is loaded into memory and references the
particular software module being loaded. In this case, a back
reference for the particular software module being loaded is
included to point to the different software module.

The software module editor 302 is implemented in a
machine-accessible and computer-readable storage medium
and is to process on the same machine as the software
module loader 301 or an entirely different machine of the
network. Example processing associated with the software
module editor was presented in detail above with reference
to the method 100 of the FIG. 1.

The software module editor 302 is used to create the files
and edit the relationships and the attributes defined in the
files.

In an embodiment, the software module editor 302 man-
ages the files defining the software modules in a team-based
and project-based software processing environment. The
software module editor 302 also permits versioning of the
files and the software modules.

FIG. 4 is a diagram of another object-dependencies man-
agement system 400, according to an example embodiment,
according to an example embodiment. The object-depen-
dencies management system 400 is implemented as instruc-
tions on or within a machine-accessible and computer-
readable storage medium. The instructions when executed
by a machine (such as a computer) perform various aspects
of the processing depicted with respect to the methods 100
and 200 of the FIGS. 1 and 2, respectively, and processing
associated with the system 300 of the FIG. 3. The object-
dependencies management system 400 is also operational
over a network and the network may be wired, wireless, or
a combination of wired and wireless.

The object-dependencies management system 400
includes a software module 401 and a relationship manager
402. Each of these components and their interactions with
one another will now be discussed in turn.

The software module 401 is implemented in a machine-
accessible and computer-readable storage medium and is to
process on a machine within the network.

A configuration for the software module 401 is defined in
a configuration file. The configuration file is embedded
within the software module 401 or carried with the software
module 401 as metadata. The configuration file defines
relationships and attributes for the software module 401
when the software module 401 is loaded and processed
within the machine (such as a computer).

According to an embodiment, each relationship is asso-
ciated with a relationship type. Each relationship type is one
of the following: a parent and child type that physically
includes a dependency to another software module; a refer-
ence type that logically points to another software module;
a contained reference type that includes a logical parent and
child dependency: and a user-defined type that customizes a
particular relationship in response to user-defined criteria.

In an embodiment, at least one relationship type and
relationship defined within the configuration file permits the
software module 401 to share structure with another differ-
ent software module of the team-based project environment.

The relationship manager 402 is implemented in a
machine-accessible and computer-readable storage medium

10

15

20

25

30

35

40

45

50

55

12

and is to process on the same machine as the software
module 401 or an entirely different machine of the network.
Example processing associated with the relationship man-
ager was described in various aspects above with reference
to the methods 100 and 200 of the FIGS. 1 and 2, respec-
tively, and with respect to the system 300 of the FIG. 3.

The relationship manager 402 establishes the relation-
ships and sets values for the attributes via definitions
included in the configuration file. At least one relationship
identifies a different software module and at least one
attribute is set via a reference to still another different
software module. So, the software module 401 carries via its
configuration file its complex web of dependencies to other
software modules that process within the team-based project
environment.

In an embodiment, the relationship manager 402 issues a
warning when some software modules referenced in the
configuration file as particular relationships are not available
to the software module 401. However, the relationship
manager 402 permits the software module 401 to load and
process in spite of this situation. Thus, loosely coupled and
defined dependencies within the configuration file can be
ignored when loading and processing the software module
401. This permits a lot of flexibility in a project environ-
ment, since developers relying on the software module 401
to do work can proceed even when some dependent modules
are not available when the developers want to do the work.

In another case, the relationship manager 402 halts load-
ing the software module 401 when a particular relationship
includes an embedded reference to another software module
associated with a hard dependency. This can be when the
software module 401 shares structure with the unavailable
module and the relationship type for the particular relation-
ship indicates that it is a hard dependency.

The above description is illustrative, and not restrictive.
Many other embodiments will be apparent to those of skill
in the art upon reviewing the above description. The scope
of embodiments should therefore be determined with refer-
ence to the appended claims, along with the full scope of
equivalents to which such claims are entitled.

The Abstract is provided to comply with 37 C.EFR.
§1.72(b) and will allow the reader to quickly ascertain the
nature and gist of the technical disclosure. It is submitted
with the understanding that it will not be used to interpret or
limit the scope or meaning of the claims.

In the foregoing description of the embodiments, various
features are grouped together in a single embodiment for the
purpose of streamlining the disclosure. This method of
disclosure is not to be interpreted as reflecting that the
claimed embodiments have more features than are expressly
recited in each claim. Rather, as the following claims reflect,
inventive subject matter lies in less than all features of a
single disclosed embodiment. Thus the following claims are
hereby incorporated into the Description of the Embodi-
ments, with each claim standing on its own as a separate
exemplary embodiment.

The invention claimed is:

1. A method of managing object dependencies in a team-
based project environment, comprising:

creating a first file that defines characteristics of a soft-

ware module that executes as instructions on a
machine, wherein the software module is represented
as a first object, the first file being carried by the first
object and being particular to said first object;
defining within said first file multiple relationships
between the first object and other second objects asso-
ciated with said team-based project environment, each

US 9,449,298 B2

13

of said second objects having its own second file that is
particular to such second object and that defines other
relationships of said each second object, and defining
within the first file attributes of said first object having
attribute values defined by one or more third objects;
and
subsequently instantiating an instance of the first object
within the team-based project environment and config-
uring the first object on the machine in response to the
relationships and attributes defined in the first file; and

instantiating instances of one or more of said second and
third objects based upon the relationships and attributes
defined in the first file of the first object.
2. The method of claim 1, wherein creating further
includes interacting with a user via an interface to define the
characteristics included in the first file.
3. The method of claim 1, wherein defining further
comprises including with each relationship defined within
the first file a relationship type that includes one of the
following: a parent and child relationship that incorporates
another one of the other objects and its definition within the
file, a reference that points to one of the other objects, a
contained reference that logically represents the parent and
child relationship but does not share storage with another
one of the other objects to which it is associated, and a
user-defined relationship to one of the other objects.
4. The method of claim 1, wherein defining further
includes automatically defining at least one relationship for
the first object within the first file as a back reference
relationship, wherein the back reference relationship iden-
tifies one of the other objects that references the first object
in a different file that defines that one other object and its
relationships.
5. The method of claim 1, wherein defining further
includes defining at least one relationship that permits the
first object to share a profile with that which is defined for
another one of the other objects.
6. The method of claim 1 further comprising identifying
at least one attribute associated with the first object and
defined in the first file to reference another one of the other
objects.
7. The method of claim 6, wherein identifying further
includes permitting two attributes having a same name to
reference two different ones of the other objects, wherein a
particular one of the two attributes is selected in response to
a processing context of the first object at run time.
8. A method of managing object dependencies in a team-
based project environment, comprising:
receiving a request to load a software module into
memory of a machine for processing as a first object;

acquiring a first file carried by and particular to the first
object that defines relationships of the first object to
second objects and defines attributes for the first object
having values set by other objects;

setting the relationships and the attributes in memory for

the first object;

permitting at least some second objects defined within the

first file to be bypassed in response to relationship types
associated with the defined relationships, and wherein
the second objects are not loaded into memory with the
first object; and

loading at least some third objects defined within the first

file in response to the relationship types associated with
the relationships and in response to attributes defined in
the first file.

9. The method of claim 8, wherein setting further includes
allowing at least some relationships defined within the file to

10

15

20

25

30

35

40

45

50

55

60

65

14

be processed via keys included in the file, wherein the keys
when dynamically de-referenced refer to the second objects
or the third objects.

10. The method of claim 8, wherein setting further
includes allowing at least some attributes defined within the
file to reference the second objects or the third objects.

11. The method of claim 8, wherein setting further
includes dynamically setting a particular relationship not
defined within the file when loading the first object, wherein
the particular relationship identifies a fourth object that is
loaded into memory and that is currently pointing to the first
object.

12. The method of claim 8, wherein setting further
includes allowing two attributes having a same name to be
processed and loaded into memory for the first object,
wherein a particular context for the same name is resolved
during processing of the first object, and wherein two
different values are associated with the same name of the
two attributes a first value referencing a fourth object and a
second value referencing a fifth object.

13. The method of claim 12, wherein allowing further
includes identifying the same name as an attribute whose
value is resolved in the particular context to a particular
value for a particular attribute of the fourth object or the fifth
object.

14. The method of claim 8 further comprising, identifying
the first object as being a child object of another parent
object that is currently not loaded into the memory and
permitting the first object to load even when the parent
object is currently not loaded into the memory of the
machine.

15. A machine-implemented system for managing object
dependencies in a team-based project environment, com-
prising:

a software module loader implemented in a machine-
accessible and readable non-transitory medium and to
process on a machine within a network; and

a software module editor implemented in a machine-
accessible and readable non-transitory medium and to
process on the machine or a different machine of the
network;

wherein the software module loader is to access files
associated with a plurality of software modules, each
software module having its own file that is particular to
and carried by the software module and that defines
attributes and relationships for the software module,
and wherein at least one relationship defined by each
file references a different one of the software modules
not associated with that particular file, and wherein at
least one value for at least one attribute is defined in
each file via a reference to another one of the software
modules, and the software module loader uses each file
to load software modules into memory based upon the
relationships and the attributes, and the software mod-
ule editor is used to create the files and edit the
relationships and the attributes defined in the files.

16. The system of claim 15, wherein at least one file
includes a duplicated attribute, wherein each instance of the
duplicated attribute references a different one of the software
modules.

17. The system of claim 15, wherein at least one file
includes a particular relationship that shares a storage struc-
ture with different one of the software modules from that
which is associated with the file.

US 9,449,298 B2

15

18. The system of claim 15, wherein the files defining the
software modules are managed by the software module
editor in a team-based and project-based software process-
ing environment.

19. The system of claim 15, wherein the software module
editor provides version management of the files.

20. The system of claim 15, wherein the software module
loader includes a particular relationship with a loaded ver-
sion of particular software module that identifies a reference
that a different one of the software modules has that refer-
ences the particular software module.

21. A system for managing object dependencies in a
team-based project environment, comprising:

a first software module represented as an object that is
implemented in a machine-accessible and readable
non-transitory medium and that processes on a machine
of a network; and

a relationship manager implemented in a machine-acces-
sible and readable non-transitory medium and to pro-
cess on the machine or a different machine of the
network;

wherein a configuration for the first software module is
defined in a configuration file that is carried by and is
particular to said first software module, the configura-
tion file defining relationships between the first soft-
ware module and one or more second software modules
and defining attributes for the first software module

10

15

20

25

16

when it processes on the machine, and wherein the
relationship manager establishes the defined relation-
ships and sets values for the defined attributes by
reference to one or more third software modules via
definitions included in the configuration file.

22. The system of claim 21, wherein each relationship is
associated with a relationship type and each relationship
type is one of the following: a parent and child type that
physically includes a dependency to another software mod-
ule, a reference type that logically points to another software
module, a contained reference type that includes a logical
parent and child dependency, and a user-defined type that
customizes a particular relationship in response to a user-
defined criteria.

23. The system of claim 21, wherein the relationship
builder issues a warning when some software modules
referenced in the file as particular relationships are not
available to the software module but permits the software
module to load and process anyway.

24. The system of claim 21, wherein the relationship
builder halts loading the software module when a particular
relationship includes an embedded reference to another
software module.

25. The system of claim 21, wherein at least one rela-
tionship permits the software module to share structure with
another software module.

#* #* #* #* #*

